Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synthesis of methyl halides from biomass using engineered microbes.

Identifieur interne : 003469 ( Main/Exploration ); précédent : 003468; suivant : 003470

Synthesis of methyl halides from biomass using engineered microbes.

Auteurs : Travis S. Bayer [États-Unis] ; Daniel M. Widmaier ; Karsten Temme ; Ethan A. Mirsky ; Daniel V. Santi ; Christopher A. Voigt

Source :

RBID : pubmed:19378995

Descripteurs français

English descriptors

Abstract

Methyl halides are used as agricultural fumigants and are precursor molecules that can be catalytically converted to chemicals and fuels. Plants and microorganisms naturally produce methyl halides, but these organisms produce very low yields or are not amenable to industrial production. A single methyl halide transferase (MHT) enzyme transfers the methyl group from the ubiquitous metabolite S-adenoyl methionine (SAM) to a halide ion. Using a synthetic metagenomic approach, we chemically synthesized all 89 putative MHT genes from plants, fungi, bacteria, and unidentified organisms present in the NCBI sequence database. The set was screened in Escherichia coli to identify the rates of CH(3)Cl, CH(3)Br, and CH(3)I production, with 56% of the library active on chloride, 85% on bromide, and 69% on iodide. Expression of the highest activity MHT and subsequent engineering in Saccharomyces cerevisiae results in productivity of 190 mg/L-h from glucose and sucrose. Using a symbiotic co-culture of the engineered yeast and the cellulolytic bacterium Actinotalea fermentans, we are able to achieve methyl halide production from unprocessed switchgrass (Panicum virgatum), corn stover, sugar cane bagasse, and poplar (Populus sp.). These results demonstrate the potential of producing methyl halides from non-food agricultural resources.

DOI: 10.1021/ja809461u
PubMed: 19378995


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synthesis of methyl halides from biomass using engineered microbes.</title>
<author>
<name sortKey="Bayer, Travis S" sort="Bayer, Travis S" uniqKey="Bayer T" first="Travis S" last="Bayer">Travis S. Bayer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmaceutical Chemistry, University of California, San Francisco, MC 2540, Room 408C, 1700 4th Street, San Francisco, California 94158-2330, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmaceutical Chemistry, University of California, San Francisco, MC 2540, Room 408C, 1700 4th Street, San Francisco, California 94158-2330</wicri:regionArea>
<wicri:noRegion>California 94158-2330</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Widmaier, Daniel M" sort="Widmaier, Daniel M" uniqKey="Widmaier D" first="Daniel M" last="Widmaier">Daniel M. Widmaier</name>
</author>
<author>
<name sortKey="Temme, Karsten" sort="Temme, Karsten" uniqKey="Temme K" first="Karsten" last="Temme">Karsten Temme</name>
</author>
<author>
<name sortKey="Mirsky, Ethan A" sort="Mirsky, Ethan A" uniqKey="Mirsky E" first="Ethan A" last="Mirsky">Ethan A. Mirsky</name>
</author>
<author>
<name sortKey="Santi, Daniel V" sort="Santi, Daniel V" uniqKey="Santi D" first="Daniel V" last="Santi">Daniel V. Santi</name>
</author>
<author>
<name sortKey="Voigt, Christopher A" sort="Voigt, Christopher A" uniqKey="Voigt C" first="Christopher A" last="Voigt">Christopher A. Voigt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19378995</idno>
<idno type="pmid">19378995</idno>
<idno type="doi">10.1021/ja809461u</idno>
<idno type="wicri:Area/Main/Corpus">003591</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003591</idno>
<idno type="wicri:Area/Main/Curation">003591</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003591</idno>
<idno type="wicri:Area/Main/Exploration">003591</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Synthesis of methyl halides from biomass using engineered microbes.</title>
<author>
<name sortKey="Bayer, Travis S" sort="Bayer, Travis S" uniqKey="Bayer T" first="Travis S" last="Bayer">Travis S. Bayer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmaceutical Chemistry, University of California, San Francisco, MC 2540, Room 408C, 1700 4th Street, San Francisco, California 94158-2330, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmaceutical Chemistry, University of California, San Francisco, MC 2540, Room 408C, 1700 4th Street, San Francisco, California 94158-2330</wicri:regionArea>
<wicri:noRegion>California 94158-2330</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Widmaier, Daniel M" sort="Widmaier, Daniel M" uniqKey="Widmaier D" first="Daniel M" last="Widmaier">Daniel M. Widmaier</name>
</author>
<author>
<name sortKey="Temme, Karsten" sort="Temme, Karsten" uniqKey="Temme K" first="Karsten" last="Temme">Karsten Temme</name>
</author>
<author>
<name sortKey="Mirsky, Ethan A" sort="Mirsky, Ethan A" uniqKey="Mirsky E" first="Ethan A" last="Mirsky">Ethan A. Mirsky</name>
</author>
<author>
<name sortKey="Santi, Daniel V" sort="Santi, Daniel V" uniqKey="Santi D" first="Daniel V" last="Santi">Daniel V. Santi</name>
</author>
<author>
<name sortKey="Voigt, Christopher A" sort="Voigt, Christopher A" uniqKey="Voigt C" first="Christopher A" last="Voigt">Christopher A. Voigt</name>
</author>
</analytic>
<series>
<title level="j">Journal of the American Chemical Society</title>
<idno type="eISSN">1520-5126</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (enzymology)</term>
<term>Bacteria (metabolism)</term>
<term>Biomass (MeSH)</term>
<term>Chemical Industry (methods)</term>
<term>Genetic Engineering (MeSH)</term>
<term>Hydrocarbons, Brominated (MeSH)</term>
<term>Hydrocarbons, Halogenated (chemical synthesis)</term>
<term>Hydrocarbons, Iodinated (MeSH)</term>
<term>Methyl Chloride (chemical synthesis)</term>
<term>Methyltransferases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bactéries (enzymologie)</term>
<term>Bactéries (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Chloro-méthane (synthèse chimique)</term>
<term>Génie génétique (MeSH)</term>
<term>Hydrocarbures bromés (MeSH)</term>
<term>Hydrocarbures halogénés (synthèse chimique)</term>
<term>Hydrocarbures iodés (MeSH)</term>
<term>Industrie chimique (méthodes)</term>
<term>Methyltransferases (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Hydrocarbons, Halogenated</term>
<term>Methyl Chloride</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Methyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Hydrocarbons, Brominated</term>
<term>Hydrocarbons, Iodinated</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Chemical Industry</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bactéries</term>
<term>Methyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Industrie chimique</term>
</keywords>
<keywords scheme="MESH" qualifier="synthèse chimique" xml:lang="fr">
<term>Chloro-méthane</term>
<term>Hydrocarbures halogénés</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Genetic Engineering</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Génie génétique</term>
<term>Hydrocarbures bromés</term>
<term>Hydrocarbures iodés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Methyl halides are used as agricultural fumigants and are precursor molecules that can be catalytically converted to chemicals and fuels. Plants and microorganisms naturally produce methyl halides, but these organisms produce very low yields or are not amenable to industrial production. A single methyl halide transferase (MHT) enzyme transfers the methyl group from the ubiquitous metabolite S-adenoyl methionine (SAM) to a halide ion. Using a synthetic metagenomic approach, we chemically synthesized all 89 putative MHT genes from plants, fungi, bacteria, and unidentified organisms present in the NCBI sequence database. The set was screened in Escherichia coli to identify the rates of CH(3)Cl, CH(3)Br, and CH(3)I production, with 56% of the library active on chloride, 85% on bromide, and 69% on iodide. Expression of the highest activity MHT and subsequent engineering in Saccharomyces cerevisiae results in productivity of 190 mg/L-h from glucose and sucrose. Using a symbiotic co-culture of the engineered yeast and the cellulolytic bacterium Actinotalea fermentans, we are able to achieve methyl halide production from unprocessed switchgrass (Panicum virgatum), corn stover, sugar cane bagasse, and poplar (Populus sp.). These results demonstrate the potential of producing methyl halides from non-food agricultural resources.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19378995</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>07</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1520-5126</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>131</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2009</Year>
<Month>May</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Journal of the American Chemical Society</Title>
<ISOAbbreviation>J Am Chem Soc</ISOAbbreviation>
</Journal>
<ArticleTitle>Synthesis of methyl halides from biomass using engineered microbes.</ArticleTitle>
<Pagination>
<MedlinePgn>6508-15</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/ja809461u</ELocationID>
<Abstract>
<AbstractText>Methyl halides are used as agricultural fumigants and are precursor molecules that can be catalytically converted to chemicals and fuels. Plants and microorganisms naturally produce methyl halides, but these organisms produce very low yields or are not amenable to industrial production. A single methyl halide transferase (MHT) enzyme transfers the methyl group from the ubiquitous metabolite S-adenoyl methionine (SAM) to a halide ion. Using a synthetic metagenomic approach, we chemically synthesized all 89 putative MHT genes from plants, fungi, bacteria, and unidentified organisms present in the NCBI sequence database. The set was screened in Escherichia coli to identify the rates of CH(3)Cl, CH(3)Br, and CH(3)I production, with 56% of the library active on chloride, 85% on bromide, and 69% on iodide. Expression of the highest activity MHT and subsequent engineering in Saccharomyces cerevisiae results in productivity of 190 mg/L-h from glucose and sucrose. Using a symbiotic co-culture of the engineered yeast and the cellulolytic bacterium Actinotalea fermentans, we are able to achieve methyl halide production from unprocessed switchgrass (Panicum virgatum), corn stover, sugar cane bagasse, and poplar (Populus sp.). These results demonstrate the potential of producing methyl halides from non-food agricultural resources.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bayer</LastName>
<ForeName>Travis S</ForeName>
<Initials>TS</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmaceutical Chemistry, University of California, San Francisco, MC 2540, Room 408C, 1700 4th Street, San Francisco, California 94158-2330, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Widmaier</LastName>
<ForeName>Daniel M</ForeName>
<Initials>DM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Temme</LastName>
<ForeName>Karsten</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mirsky</LastName>
<ForeName>Ethan A</ForeName>
<Initials>EA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Santi</LastName>
<ForeName>Daniel V</ForeName>
<Initials>DV</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Voigt</LastName>
<ForeName>Christopher A</ForeName>
<Initials>CA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Am Chem Soc</MedlineTA>
<NlmUniqueID>7503056</NlmUniqueID>
<ISSNLinking>0002-7863</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006842">Hydrocarbons, Brominated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006846">Hydrocarbons, Halogenated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006847">Hydrocarbons, Iodinated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9V42E1Z7B6</RegistryNumber>
<NameOfSubstance UI="C005218">methyl bromide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>A6R43525YO</RegistryNumber>
<NameOfSubstance UI="D008737">Methyl Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>DAT010ZJSR</RegistryNumber>
<NameOfSubstance UI="C014055">methyl iodide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="D008780">Methyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="C064965">methyl chloride transferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002617" MajorTopicYN="N">Chemical Industry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="Y">Genetic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006842" MajorTopicYN="N">Hydrocarbons, Brominated</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006846" MajorTopicYN="N">Hydrocarbons, Halogenated</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="Y">chemical synthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006847" MajorTopicYN="N">Hydrocarbons, Iodinated</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008737" MajorTopicYN="N">Methyl Chloride</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008780" MajorTopicYN="N">Methyltransferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19378995</ArticleId>
<ArticleId IdType="doi">10.1021/ja809461u</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Mirsky, Ethan A" sort="Mirsky, Ethan A" uniqKey="Mirsky E" first="Ethan A" last="Mirsky">Ethan A. Mirsky</name>
<name sortKey="Santi, Daniel V" sort="Santi, Daniel V" uniqKey="Santi D" first="Daniel V" last="Santi">Daniel V. Santi</name>
<name sortKey="Temme, Karsten" sort="Temme, Karsten" uniqKey="Temme K" first="Karsten" last="Temme">Karsten Temme</name>
<name sortKey="Voigt, Christopher A" sort="Voigt, Christopher A" uniqKey="Voigt C" first="Christopher A" last="Voigt">Christopher A. Voigt</name>
<name sortKey="Widmaier, Daniel M" sort="Widmaier, Daniel M" uniqKey="Widmaier D" first="Daniel M" last="Widmaier">Daniel M. Widmaier</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Bayer, Travis S" sort="Bayer, Travis S" uniqKey="Bayer T" first="Travis S" last="Bayer">Travis S. Bayer</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003469 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003469 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19378995
   |texte=   Synthesis of methyl halides from biomass using engineered microbes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19378995" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020